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Transport properties of the diluted Lorentz slab
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We study the behavior of a point particle incident on a slab of a randomly diluted triangular array of circular
scatterers. Various scattering properties, such as the reflection and transmission probabilities and the scattering
time are studied as a function of thickness and dilution. We show that a diffusion model satisfactorily describes
the mentioned scattering properties. We also show how some of these quantities can be evaluated exactly and
their agreement with numerical experiments. Our results exhibit the dependence of these scattering data on the
mean free path. This dependence again shows excellent agreement with the predictions of a Brownian motion
model.
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I. INTRODUCTION The importance of looking at the randomly diluted case is
that it provides a controlled way of varying the mean free
The Lorentz gag1] is one of the fundamental kinetic path—and hence the diffusion constant—over an arbitrarily
theory modelg2], and many of its ergodic properties are large range, without affecting the property of having a finite
well known[3]. In a previous papeid] we investigated the horizon and hence a normal diffusive behavior. This there-
scattering and transmission properties of an array of disk&re allows us to check the correspondence with diffusion
centered on a finite triangular lattice, a Lorentz slab. ThereModels much more thoroughly. Further, it shows that the
we studied the validity of approximating the motion of such correspondence between classical deterministic motion and
a particle by a diffusive proce$s]. Specifically, we consid- Brownian motion, as proved rigorously in R¢b] for the
ered samples of finite thickne&salong thex axis, but infi- case .Of periodic billiards, does not, in fact, require strict pe-
nite along they axis. We then looked at the behavior of a r|od|r(]:!ty. . ed as foll ) q ib
particle incident on the sample from the left and measured g |s.|pﬁper '?] organize ?S OlIOWS. In Sec. |l W]? esc(:jrl €
the probabilityT of being transmitted to the right, the reflec- N etail how the numerical experiments are performed. In
tion probability R, and the average residence tifw. We particular, we define two different ways in which we intro-
found a very satisfactory agreement with the predictions OFuce disorder in the system, namejyenchedindannealed

one-dimensional Brownian motion for all these quantities h Sec. lll we discuss the average transport properties, such

when the distance between scatterers is small enough to pr@§ transmission probability, mean free path, and average

vent any particle from moving in an arbitrarily long straight Scattering time. We f.'nd that th? Iast' two quantities can be
line (the so-called finite horizon caseWhen such un- evaluated exactly using a relationship due to K&g We

bounded motion is possible we found that normal diffusived'Splay the numerical results for these quantities as well as

behavior did not arise. Rather, a complex pattern of logarith{€ Predictions using the Kac formula and the diffusion

mic corrections was found for the various quantities of inter-mo.del' FforhtheKsakfe of C(l)m_ple;enessd_wirelprosducel\t/he deri-

est. A modification of the diffusive model consideringwye vation of the Kac formula in Appendix A. In Sec. IV we

walks as suggested in Ref§,7] explains such features. Q|scuss the dlStI’!bUtIOh funptlons of frge paths,'of residence
Here we study the situation in which the system is ranimes, and of heights of exit of transmitted particles. In Ap-

domly diluted, but the scatterers are still placed on the sitegendix B we derive the latter two distributions for the diffu-

of a triangular lattice. That is, we consider the case in whicte'©" Model. Finally, in Sec. V- we present our conclusions.

a fractionf of the cells of the periodic array is occupied by
scatterers and the rest is empty. In such a system, the particle Il. MODEL SETUP
can always take steps of arbitrary length, but the horizon is ] . ]
said to be finite if the distribution of free paths has an expo- The geometric arrangement of the scatterers in the undi-
nential cutoff. This happens when the corresponding systerited (f=1) system is the following: each scatterer is a disk
with f=1 has finite horizon, i.e., the only large steps thatof unit radius, the centers of which form a triangular lattice.
occur in the diluted system are related to the absence of &he slab is infinite in the vertical direction and is character-
large number of scatterers, which is an exponentially imiZ€d by the numbek of columns and the minimal separation
probable event. In this paper, we restrict ourselves to thi§/ between the disks. Dilution is then obtained by occupying
finite horizon case. only a fractionf of the sites of the array with disks of unit
radius. A typical scatterer configuration is shown in Fig. 1.
The left and right “sawtooth” borders are the outer sides of
*Email address: rrs@teotleco.cie.unam.mx the hexagonal cells attached to each site of the lattice.
"Email address: ruffo@avanzi.de.unifi.it Particles are launched from randomly chosen positions
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FIG. 2. Mean free path shifted by/2 as a function of the
dilution f for quenched disorder. The curves are the first term of the
right-hand side of Eq(2). Each point represents the average over
10 collisions.

FIG. 1. Slab of diluted scatterers in a triangular array with
=10, w=0.2, andf =0.7. Point particles enter the slab on the left

side sawtooth border. ated in terms of phase space integrals using the Kac formula

o , ) 8], which assumes ergodicity. Indeed, as shown in Appen-
along the left border. Each incident particle has a differengiy o for a particle moving freely at unit velocity in a
impact parametel, defined here as the distance between th,;,nded domain of are the average return timeZ') to a
initial position and the horizontal line passing through theboundary segment of lengf is
center of the scatterer in the cell. The angles of incidethce
measured with respect to the side from which the particle is T
launched, are distributed in the interj&l,7] in such a way (T)=—+" 1
as to make co8 uniformly distributed. This choice repro-
duces initially the Liouville measure in the Birkhoff coordi- For the Lorentz gas, choosing the boundary segment as the
nates. The particles move freely except for elastic collisiongerimeter of all disks, the average return time coincides with

at the boundary of the disks. _ the mean free time between two collisions. Since the par-
In the undiluted casef(=1), if the separation between ticles move with unit velocity, this also coincides with the
scatterersw is small, 0<w<w,=(4/y/3-2)=0.30% ..., mean free path. Considering a finite array of Wigner-Seitz

the length of free motion of the particles is bounded and the}hexagonaj cells witl. columns andvl rows, the total area of
“see” a finite horizon. All the numerical experiments dis- the domain i< MC, whereC = (2+w)?2\/3/2 is the cell area.
cussed in this paper are performed in this range. On the othgfyom this we must subtract the area occupied by the unit
hand, in the diluted case, arbitrarily long paths without col-radjus disks, i.e., #fLM. The total perimeter isP
lisions can exist also for&w<w, but their contributionto  =27f_LM. Hence, from Eq.1) and the above consider-

the diffusion constant remains finite. ations
As far as the dilution process itself is concerned, we real-
ize it in two different ways corresponding to the usual dis- V3 T
tinction betweenquenchedand annealeddisorder. The an- A= (wt 2)%— > 2

nealed disorder is obtained by choosing with probabilitye
cell to be occupied at the moment at which the particle enterRjote that this holds for any value ® and hence extends
the cell. Thus, when the particle eventually revisits a giveryjyially to the case we consider, whehd is infinite. The
cell, its occupancy status may be different. This way of in-ysya| derivation of Eq1) only applies to the quenched case,
troducing disorder involves a simultaneous average over thgg o a scatterer configuration that is fixed in time. How-
dynamical and the disorder variables. On the other hand, wgyer, the arguments we give in Appendix A show how to
also performed dilution in the more realistic quenched caseaytend it to the annealed case as well. Numerical experi-
in which a sample is first created, for which all cells arements confirm this finding for both quenched and annealed
either occupied or empty with probabilifyand averages are gisorder. In Fig. 2 we display the results for quenched disor-
taken over many realizations of disorder. der, since the annealed data are numerically indistinguish-
able.

The slab is infinite in the direction and the collisions are
elastic, hence every particle that enters the slab must even-

We begin this section by showing a derivation of a for-tually leave it, except for a set of zero measure which goes
mula for the mean free path as a function of the geometri- asymptotically to bounded orbits inside the slab. Thus, in
cal parametew and dilutionf. This quantity can be evalu- practice, a particle that enters the slab collides with some of

IIl. AVERAGE TRANSPORT PROPERTIES
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to L is exact over the whole range bf On the other hand, in

2'4£, T T T T T T Eqg. (4), a constant term appears which is negligible in the
221, w=odo limit a/l<L. Since this is the limit for which diffusion is
5 "_\x . w=03 = | expected to be a valid description, this is not a serious prob-
RN lem. On the other hand, this allows to evaluate the ratd
L8 SN e W . exactly in terms of andw, via
16 U 4
q L4 \#\..,..: \: a 2B(f,w)
1'2 NS D I ©
1R It is well known that it is not possible to obtain exact evalu-
08k ations of the same sort for the diffusion co_nsté)msince its
| | | value can be shown to depend in a detailed manner on the

0.6 ifi ics i
0.2 03 04 05 06 07 08 009 specific dynamics involved. Indeed,

f

FIG. 3. Dependence @& onf for quenched disorder. The curves
are Eq.(3). The values oB were found by adjusting a straight line
to the experimental data obtained by letting’ Jfhrticles travel  \yhere the bar denotes an average over the realizations of the
through slabs of lengths going from 100 to 1500. disorder. From this it follows that an analytical expression

for D in terms of simple phase space expressions is impos-
X . ; "ible. However, an order of magnitude estimateDocan be

Eg. (,1) one can obtaln'the average residence t{meas a given. Since the mean square distance grows linearly with
function ofw, 1, andL, if one now takes the_ border of the time, and since the only microscopic length scale is the mean
slab as the bou_ndary s_egment. For a slab witolumns and free path, we are led to estimaB, by the square of the

M rows the perimeter i14(2+w)//3 and the total area of 10an free path, whetg is the time needed for the particle to

D=1lim | x(0)x(t)e dt, (6)

e—0

the domain is as before. Hence cover a mean free path. In our system, the velocity of the
5 particle is constant and equal to one, therefore the result is
(H(fw,L)= 3m(2tw) |3 L=B(f,w)L. thatD is of the same order & both being of the order of
8 4(2+w) the mean free path. This is indeed consistent with(8g.It

3 should be noted that the ratio of the two dynamics dependent
quantitiesa andD depends only on the geometric features of
the system.

Let us now turn to another average transport property, for
which no exact expression is available, namely the transmis-
sion probabilityT as a function olL. One finds that asymp-
totically, in the limitL>1,

This equation defines the quantBy As above see Eq(2)],

the result is independent ofl. We verified numerically the
linear growth of(7) with L and found it to be valid, as
expected, also for small values lof From these experiments
we obtained the values @& shown in Fig. 3 for quenched
disorder together with Eq3). The agreement in the an-

nealed casénot shown is even more satisfactory. Note that A(F,w)
B does not diverge a§—0, as opposed to the mean free T(f,w,L)= L . 7
path.

Let us now compare these exact results with the predic- ) .
tions of a model based on Brownian motion. We assume thdf Fig. 4 we show thaf grows almost linearly with, for
the particles incident from the left penetrate a given distancérge values ok. This can readily be understood in terms of
a into the sample, after which they forget everything aboutthe diffusive model. Indeed, in the case of a diffusing par-
the way they were injected into the system and diffuse witHicle being injected at a distaneefrom the left-hand side of
diffusion constanD. Under these assumptions, the quantitiesth® slab, the probability that it be transmitted to the right-
of interest can be evaluated exactly in termsaafndD and har}d side without being absorbed first at the left-hand side
compared with the exact results obtained above. Thus, théd IS well known to bef9,10]
average time to reach either side starting at a distarfoem

o a
the left side is given by9,10| Ty(L)= = )
B a(lL—a)
(n(L)= 2D ) From this we see thah can be identified with a quantity

which, as argued above, is expected to scale as the mean free
wherel=3(1+w/2) is the horizontal separation between path. Note further that whereés) and\ are identical in the
columns of the slab. One sees therefore that the form of thquenched and annealed cases, this is not true for the trans-
L dependence in the diffusive case is slightly different frommission probability, which shows significant differences for
the exact one, E(3), since in that case the proportionality the two forms of disorder.
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FIG. 4. Dependence ¢k on the mean free path for w=0.2.

! | T I X

- quenched —— R
annealed --¢- v

0 4 8 12 16 20

PHYSICAL REVIEW E 64 041101

tribution as an equilibrium property, it readily follows that
they are independent of whether the average is taken as
quenched or annealed.

Now let us consider the distribution of residence times,
which is not susceptible of an exact evaluation. However, it
can be computed in the diffusion model. It is clearly suffi-
cient to compute the distribution of residence times for trans-
mitted particlespans UpON starting ata, since the corre-
sponding distribution for reflected particlgs. arises by
substitutinga by IL —a in pyans. Defining the scaled vari-
ables7=D7/(IL)? and a=a/(IL), the final result is, as
shown in Appendix B10]

oo

Puand Tia) =21 >, nsinq-rn(l—a)e*”znz?. 9
n=1

Both quenched and annealed disorder are shown. The valugs of Integrating, one obtains E¢4) for the average time a dif-
were found by adjusting Ed7) to the experimental data obtained fusing particle takes to reach either side. We fit this to the
by letting 10 particles travel through slabs of lengths going from numerical data as follows: one first considers the average

100 to 1500.

IV. DISTRIBUTION FUNCTIONS

time that a transmitted particle remains in the sample. This is
obtainable from the experimental distribution on the one
hand, but is also given by

We have also studied the distributions of residence times

Y - 10% prrrrm——r
of transmitted(reflected particles, of free paths, and of the -
heights at which transmittetteflected particles leave the [ (a) 1
system. 10°F 5
Of these, only the distribution of free paths is accessible XY i
to exact theoretical treatment. Indeed, this is nothing but an 10! AN -
equilibrium property, and can in principle be evaluated using = I ]
an integral over the perimeter of the billiard with the £ ol ]
Birkhoff measure. However, this is not really practical, so we 10 i 7
have not attempted it. The distribution of mean free paths is _ i
quite irregular(see Fig. 5. This irregularity arises from the 10~ -
presence of resonances and the fact that there are forbidden - y
distances. Note that, as remarked in the Introduction, the ol bl ]
distribution decays expone_ntia_llly since the horizon is finite_z. 10~  10-3 102 10~} 100
From the above characterization of the mean free path dis- 7
16_1 10 T T ] T 3
I T 1 ] 1 I i 3
= 0.3, quenched —— b ]
i J} = O.5,%nnealed ————— ( ) .
10 i 100 ‘ =
I | \ ]
10_3 F « ? i" :
A 10 M, .
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107° 1072 " F‘r-l =
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FIG. 5. Free path distribution fow=0.2, f=0.5 for both

A

FIG. 6. Distribution of residence times for reflecté@ and
transmitted(b) particles for quenched disordev=0.2 andf =0.5.

quenched and annealed disorder. The curves are practically supdrhe continuous curve represents the fit described in the text. The

imposed. The distributions were found from®ibllisions in each

case.

experimental distributions were found by letting’ articles travel
through a slab with 100 columns.
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have also shown how the diffusion constant and the penetra-
tion depth, which were the two dynamical parameters of our
model, vary with dilution, and hence with the mean free
path.

10° g T T T T T
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FIG. 7. Height distribution of transmitted particles for quenched

1072

disorderw=0.2 andf =0.2. The continuous curve is the plot of Eq. APPENDIX A
(11). The experimental distribution was found by letting’ Iifar-
ticles travel through a slab with 100 columns. In this appendix, we show in detail how the exact rela-
tions (2) and(3) are obtained. To this end, we first recall the
12 2 derivation of a general formula due to Kac. Consider a
<T>”a”5:6_D' (100  (2N—1)-dimensional energy shell in aNadimensional

Hamiltonian phase space and select & {22)-dimensional
Poincaresurface that intersects dlbbr nearly al) trajectories
on the energy shell. If such a surface cannot be found, then
the phase space integrals below must be restricted to that part

obtains a value of the parameterOne is then in a position of the phasg space Whi.Ch can be reached from the sur_face.
to plot the theoretical curve E€Q) together with the empiri- Parametrize each poinp(q) on the energy surface using
cal data. This is shown in Fig. 6, for an occupation fractionthe last point £.9) on the Poincarsurface that lies on the
f=0.5. The agreement is quite good. The apparent shift bgrajectory passing throughp(q). Denote byTE(p q) the

tween the theoretical curve and the data in reflection can bgme necessary to reaclp,q) starting from p,q). This de-
traced back to an issue of normalization involving particlesfines the canonical coordinate transformation
reflected after a very few bounces, which therefore do not

This allows, therefore, a determination Bffrom the data,
which for f=1 is in good agreement with published data
[11]. From this and Eq(3) together with Eq(4), one also

show diffusive behavior. Thus, the empirical distribution has dVp qu:dN—lﬁdN—lade E. (A1)
a short-time cutoff at larger times than the corresponding
diffusive model. The constant energlfy volume is hence

Finally, we measure the distribution of heights of trans-
mitted particles. This distribution can be computed in the N N B _ N TN T
diffusive model. The result for transmitted particles is, as f dpd™q 5[Eo—H(p.q)]= | d™"pd™"q Zg (p,q).
shown in Appendix B, (A2)

sinm(1—a) 1 Denoting by, the total (N—2)-dimensional phase space
p(n)= 5 (1)) volume of the Poincarsurface, one immediately obtains the
o .
Kac formula for the average time to return to the surface:

coshrn—cosm(l—a)’

where 7 is the scaled heighy/(IL) and « is as above. In
Fig. 7 we showp(#) for transmitted particles. The agree- <TEo>:N_1f S5[Eo—H(p,q)]d"pdNg, (A3)
ment is excellent. We do not show the behavior for reflected
particles as it is dominated by rapid reflections.
N=f dN~1pdN1iq.
V. CONCLUSIONS E=Fo

Summarizing, we have studied transport properties of fi-To evaluate these integrals in the case of billiardsNer 2
nite size samples of Lorentz gases in a situation in which th¢of which the Lorentz gas with quenched disorder is a par-
mean free path can be varied over a large range of valudicular casg we take the Hamiltonian to bg?/2 andE, to
without affecting the property of normal diffusion. The meanbe 1/2. From this follows
free path was varied over a considerable rafstjghtly more
than an order of magnitugleand the agreement with the .
Brownian motion model was satisfactory throughout. We J’ d*pd?qs[1/2-p*/2]=27S, (A4)
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whereSis the area of the billiard. As a Poincasarface we

PHYSICAL REVIEW E 64 041101

particle first exits the slab on the right side at a heighnd

introduce an arbitrary subset of the billiard boundary havingat timet. In order to simplify the notation, we first go over to
perimeterP, with the usual Birkhoff coordinates as variables scaled variableg=x/(IL), n=y/(IL), a=al/(IL), as well

p andg. One then finds

- 2
J dpdq:PJ
E=Eg — /2

From these two equations one derives Hq.

cosfdo=2P. (A5)

The above remarks are clearly limited to the case of

as 7= Dt/(IL)2. All distribution functions are further re-
scaled in such a way as to remain normalized. In these vari-
ables, this probability is given by

_ IPo(E.7;7)
Prrans( i T)=——""7——

A (B1)

guenched disorder. The generalization to the annealed case

can be made as follows: to every poift,) on the Poincare  \yhereP (¢, 7) is the solution of the following problem:
surface, add a doubly infinite sequence of zeroes and ones

(0 k= —= » Which we denote byTr, with all o independently
distributed and equal to one with probabilityWe now de-

fine the dynamics as follows: The orbit starts fromq) and

IPo(£,7;7)
ar

:Apo(fﬂl),

the cell att=0 is occupied or empty according to the value
of o. The orbit then proceeds until it leaves the cell. The
status of the next cell is then decided according to the value
of o1 and so on. Although discontinuities arise when a tra-
jectory crosses a vertex of the fundamental cell, the dynam-

Po(0,77; ) =Po(1,7;7)=0.
(B2)

Po(£,7,0)=8(§—a)8(7)

ics is still given by a canonical map. Thus, forfiaed se-
guenceo the formula Eq(A3) applies. However, for a fixed

sequence, we cannot easily compute the phase space v

This is now solved by developing th& function in eigen-
modes of the Laplacian satisfying the boundary conditions in

&g. (B2), that is

umes involved. Since we are only interested in the average of

(T)(;) over all values ofr, we note the following: the de-
nominator in Eq(A3) is independent o, so that it is suf-

—_oN . = dk
P0(§,77§T):22 S|nn7-r§smn7-raf Z—el 7
n=1 _

w £TT

ficient to average over the numerator. This average can be

performed separately for each cell, and the result therefore

follows trivially.

APPENDIX B

In this appendix we derive Eq&) and(11). To this end,
we first derive an analog of E¢Q) for the probability that a

x exd — (m2n?+k?)7]. (B3)
The resulting expression f%rans(ﬁ;) can now be inte-
grated either over or over r to yield Eq.(9) or Eq. (11),

respectively. In either case, obtaining the results in the text is
now a matter of straightforward algebra.
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