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Transport properties of the diluted Lorentz slab
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We study the behavior of a point particle incident on a slab of a randomly diluted triangular array of circular
scatterers. Various scattering properties, such as the reflection and transmission probabilities and the scattering
time are studied as a function of thickness and dilution. We show that a diffusion model satisfactorily describes
the mentioned scattering properties. We also show how some of these quantities can be evaluated exactly and
their agreement with numerical experiments. Our results exhibit the dependence of these scattering data on the
mean free path. This dependence again shows excellent agreement with the predictions of a Brownian motion
model.
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I. INTRODUCTION

The Lorentz gas@1# is one of the fundamental kineti
theory models@2#, and many of its ergodic properties a
well known @3#. In a previous paper@4# we investigated the
scattering and transmission properties of an array of d
centered on a finite triangular lattice, a Lorentz slab. The
we studied the validity of approximating the motion of su
a particle by a diffusive process@5#. Specifically, we consid-
ered samples of finite thicknessL along thex axis, but infi-
nite along they axis. We then looked at the behavior of
particle incident on the sample from the left and measu
the probabilityT of being transmitted to the right, the refle
tion probability R, and the average residence time^t&. We
found a very satisfactory agreement with the predictions
one-dimensional Brownian motion for all these quantit
when the distance between scatterers is small enough to
vent any particle from moving in an arbitrarily long straig
line ~the so-called finite horizon case!. When such un-
bounded motion is possible we found that normal diffus
behavior did not arise. Rather, a complex pattern of logar
mic corrections was found for the various quantities of int
est. A modification of the diffusive model considering Le´vy
walks as suggested in Refs.@6,7# explains such features.

Here we study the situation in which the system is ra
domly diluted, but the scatterers are still placed on the s
of a triangular lattice. That is, we consider the case in wh
a fractionf of the cells of the periodic array is occupied b
scatterers and the rest is empty. In such a system, the pa
can always take steps of arbitrary length, but the horizo
said to be finite if the distribution of free paths has an ex
nential cutoff. This happens when the corresponding sys
with f 51 has finite horizon, i.e., the only large steps th
occur in the diluted system are related to the absence
large number of scatterers, which is an exponentially
probable event. In this paper, we restrict ourselves to
finite horizon case.
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The importance of looking at the randomly diluted case
that it provides a controlled way of varying the mean fr
path—and hence the diffusion constant—over an arbitra
large range, without affecting the property of having a fin
horizon and hence a normal diffusive behavior. This the
fore allows us to check the correspondence with diffus
models much more thoroughly. Further, it shows that
correspondence between classical deterministic motion
Brownian motion, as proved rigorously in Ref.@5# for the
case of periodic billiards, does not, in fact, require strict p
riodicity.

This paper is organized as follows: In Sec. II we descr
in detail how the numerical experiments are performed.
particular, we define two different ways in which we intro
duce disorder in the system, namelyquenchedandannealed.
In Sec. III we discuss the average transport properties, s
as transmission probability, mean free path, and aver
scattering time. We find that the last two quantities can
evaluated exactly using a relationship due to Kac@8#. We
display the numerical results for these quantities as wel
the predictions using the Kac formula and the diffusi
model. For the sake of completeness, we reproduce the
vation of the Kac formula in Appendix A. In Sec. IV w
discuss the distribution functions of free paths, of reside
times, and of heights of exit of transmitted particles. In A
pendix B we derive the latter two distributions for the diffu
sion model. Finally, in Sec. V we present our conclusion

II. MODEL SETUP

The geometric arrangement of the scatterers in the u
luted (f 51) system is the following: each scatterer is a d
of unit radius, the centers of which form a triangular lattic
The slab is infinite in the vertical direction and is charact
ized by the numberL of columns and the minimal separatio
w between the disks. Dilution is then obtained by occupy
only a fractionf of the sites of the array with disks of un
radius. A typical scatterer configuration is shown in Fig.
The left and right ‘‘sawtooth’’ borders are the outer sides
the hexagonal cells attached to each site of the lattice.

Particles are launched from randomly chosen positi
©2001 The American Physical Society01-1
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along the left border. Each incident particle has a differ
impact parameterb, defined here as the distance between
initial position and the horizontal line passing through t
center of the scatterer in the cell. The angles of incidencu
measured with respect to the side from which the particl
launched, are distributed in the interval@0,p# in such a way
as to make cosu uniformly distributed. This choice repro
duces initially the Liouville measure in the Birkhoff coord
nates. The particles move freely except for elastic collisio
at the boundary of the disks.

In the undiluted case (f 51), if the separation betwee
scatterersw is small, 0,w,wc5(4/A322)50.3094 . . . ,
the length of free motion of the particles is bounded and t
‘‘see’’ a finite horizon. All the numerical experiments dis
cussed in this paper are performed in this range. On the o
hand, in the diluted case, arbitrarily long paths without c
lisions can exist also for 0,w,wc , but their contribution to
the diffusion constant remains finite.

As far as the dilution process itself is concerned, we re
ize it in two different ways corresponding to the usual d
tinction betweenquenchedand annealeddisorder. The an-
nealed disorder is obtained by choosing with probabilityf the
cell to be occupied at the moment at which the particle en
the cell. Thus, when the particle eventually revisits a giv
cell, its occupancy status may be different. This way of
troducing disorder involves a simultaneous average over
dynamical and the disorder variables. On the other hand
also performed dilution in the more realistic quenched ca
in which a sample is first created, for which all cells a
either occupied or empty with probabilityf and averages ar
taken over many realizations of disorder.

III. AVERAGE TRANSPORT PROPERTIES

We begin this section by showing a derivation of a fo
mula for the mean free pathl as a function of the geometri
cal parameterw and dilution f. This quantity can be evalu

FIG. 1. Slab of diluted scatterers in a triangular array withL
510, w50.2, andf 50.7. Point particles enter the slab on the le
side sawtooth border.
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ated in terms of phase space integrals using the Kac form
@8#, which assumes ergodicity. Indeed, as shown in App
dix A, for a particle moving freely at unit velocity in a
bounded domain of areaS, the average return timêT & to a
boundary segment of lengthP is

^T &5
pS

P
. ~1!

For the Lorentz gas, choosing the boundary segment as
perimeter of all disks, the average return time coincides w
the mean free time between two collisions. Since the p
ticles move with unit velocity, this also coincides with th
mean free pathl. Considering a finite array of Wigner-Seit
hexagonal cells withL columns andM rows, the total area of
the domain isLMC, whereC5(21w)2A3/2 is the cell area.
From this we must subtract the area occupied by the
radius disks, i.e., p f LM . The total perimeter isP
52p f LM . Hence, from Eq.~1! and the above consider
ations

l5
A3

4 f
~w12!22

p

2
. ~2!

Note that this holds for any value ofM and hence extend
trivially to the case we consider, whereM is infinite. The
usual derivation of Eq.~1! only applies to the quenched cas
i.e., to a scatterer configuration that is fixed in time. Ho
ever, the arguments we give in Appendix A show how
extend it to the annealed case as well. Numerical exp
ments confirm this finding for both quenched and annea
disorder. In Fig. 2 we display the results for quenched dis
der, since the annealed data are numerically indistingu
able.

The slab is infinite in they direction and the collisions are
elastic, hence every particle that enters the slab must e
tually leave it, except for a set of zero measure which g
asymptotically to bounded orbits inside the slab. Thus,
practice, a particle that enters the slab collides with some

FIG. 2. Mean free path shifted byp/2 as a function of the
dilution f for quenched disorder. The curves are the first term of
right-hand side of Eq.~2!. Each point represents the average ov
108 collisions.
1-2
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TRANSPORT PROPERTIES OF THE DILUTED LORENTZ SLAB PHYSICAL REVIEW E64 041101
the obstacles and is ultimately transmitted or reflected. F
Eq. ~1! one can obtain the average residence time^t& as a
function of w, f, andL, if one now takes the border of th
slab as the boundary segment. For a slab withL columns and
M rows the perimeter isM4(21w)/A3 and the total area o
the domain is as before. Hence

^t&~ f ,w,L !5S 3p~21w!

8
2

A3p2f

4~21w!
D L5B~ f ,w!L.

~3!

This equation defines the quantityB. As above@see Eq.~2!#,
the result is independent ofM. We verified numerically the
linear growth of ^t& with L and found it to be valid, as
expected, also for small values ofL. From these experiment
we obtained the values ofB shown in Fig. 3 for quenched
disorder together with Eq.~3!. The agreement in the an
nealed case~not shown! is even more satisfactory. Note th
B does not diverge asf→0, as opposed to the mean fre
path.

Let us now compare these exact results with the pre
tions of a model based on Brownian motion. We assume
the particles incident from the left penetrate a given dista
a into the sample, after which they forget everything abo
the way they were injected into the system and diffuse w
diffusion constantD. Under these assumptions, the quantit
of interest can be evaluated exactly in terms ofa andD and
compared with the exact results obtained above. Thus,
average time to reach either side starting at a distancea from
the left side is given by@9,10#

^t&~L !5
a~ lL 2a!

2D
, ~4!

where l 5A3(11w/2) is the horizontal separation betwee
columns of the slab. One sees therefore that the form of
L dependence in the diffusive case is slightly different fro
the exact one, Eq.~3!, since in that case the proportionali

FIG. 3. Dependence ofB on f for quenched disorder. The curve
are Eq.~3!. The values ofB were found by adjusting a straight lin
to the experimental data obtained by letting 107 particles travel
through slabs of lengths going from 100 to 1500.
04110
m

c-
at
e
t
h
s

he

e

to L is exact over the whole range ofL. On the other hand, in
Eq. ~4!, a constant term appears which is negligible in t
limit a/ l !L. Since this is the limit for which diffusion is
expected to be a valid description, this is not a serious pr
lem. On the other hand, this allows to evaluate the ratioa/D
exactly in terms off andw, via

a

D
5

2B~ f ,w!

l
. ~5!

It is well known that it is not possible to obtain exact eval
ations of the same sort for the diffusion constantD, since its
value can be shown to depend in a detailed manner on
specific dynamics involved. Indeed,

D5 lim
e→0

E
0

`

ẋ~0!ẋ~ t !̄e2etdt, ~6!

where the bar denotes an average over the realizations o
disorder. From this it follows that an analytical expressi
for D in terms of simple phase space expressions is imp
sible. However, an order of magnitude estimate forD can be
given. Since the mean square distance grows linearly w
time, and since the only microscopic length scale is the m
free path, we are led to estimateDt0 by the square of the
mean free path, wheret0 is the time needed for the particle t
cover a mean free path. In our system, the velocity of
particle is constant and equal to one, therefore the resu
that D is of the same order asa, both being of the order of
the mean free path. This is indeed consistent with Eq.~5!. It
should be noted that the ratio of the two dynamics depend
quantitiesa andD depends only on the geometric features
the system.

Let us now turn to another average transport property,
which no exact expression is available, namely the transm
sion probabilityT as a function ofL. One finds that asymp
totically, in the limit L@1,

T~ f ,w,L !5
A~ f ,w!

L
. ~7!

In Fig. 4 we show thatA grows almost linearly withl, for
large values ofl. This can readily be understood in terms
the diffusive model. Indeed, in the case of a diffusing p
ticle being injected at a distancea from the left-hand side of
the slab, the probability that it be transmitted to the rig
hand side without being absorbed first at the left-hand s
Td is well known to be@9,10#

Td~L !5
a

lL
. ~8!

From this we see thatA can be identified with a quantity
which, as argued above, is expected to scale as the mean
path. Note further that whereas^t& andl are identical in the
quenched and annealed cases, this is not true for the tr
mission probability, which shows significant differences f
the two forms of disorder.
1-3
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IV. DISTRIBUTION FUNCTIONS

We have also studied the distributions of residence tim
of transmitted~reflected! particles, of free paths, and of th
heights at which transmitted~reflected! particles leave the
system.

Of these, only the distribution of free paths is accessi
to exact theoretical treatment. Indeed, this is nothing bu
equilibrium property, and can in principle be evaluated us
an integral over the perimeter of the billiard with th
Birkhoff measure. However, this is not really practical, so
have not attempted it. The distribution of mean free path
quite irregular~see Fig. 5!. This irregularity arises from the
presence of resonances and the fact that there are forbi
distances. Note that, as remarked in the Introduction,
distribution decays exponentially since the horizon is fin
From the above characterization of the mean free path

FIG. 4. Dependence ofA on the mean free pathl for w50.2.
Both quenched and annealed disorder are shown. The valuesA
were found by adjusting Eq.~7! to the experimental data obtaine
by letting 107 particles travel through slabs of lengths going fro
100 to 1500.

FIG. 5. Free path distribution forw50.2, f 50.5 for both
quenched and annealed disorder. The curves are practically s
imposed. The distributions were found from 108 collisions in each
case.
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tribution as an equilibrium property, it readily follows tha
they are independent of whether the average is taken
quenched or annealed.

Now let us consider the distribution of residence time
which is not susceptible of an exact evaluation. However
can be computed in the diffusion model. It is clearly suf
cient to compute the distribution of residence times for tra
mitted particlesptrans upon starting ata, since the corre-
sponding distribution for reflected particlespre f l arises by
substitutinga by lL 2a in ptrans . Defining the scaled vari-
ables t̄5Dt/( lL )2 and a5a/( lL ), the final result is, as
shown in Appendix B@10#

ptrans~ t̄;a!52p (
n51

`

n sinpn~12a!e2p2n2t̄. ~9!

Integrating, one obtains Eq.~4! for the average time a dif-
fusing particle takes to reach either side. We fit this to
numerical data as follows: one first considers the aver
time that a transmitted particle remains in the sample. Thi
obtainable from the experimental distribution on the o
hand, but is also given by

f

er-

FIG. 6. Distribution of residence times for reflected~a! and
transmitted~b! particles for quenched disorder,w50.2 andf 50.5.
The continuous curve represents the fit described in the text.
experimental distributions were found by letting 107 particles travel
through a slab with 100 columns.
1-4
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TRANSPORT PROPERTIES OF THE DILUTED LORENTZ SLAB PHYSICAL REVIEW E64 041101
^t& trans5
l 2L2

6D
. ~10!

This allows, therefore, a determination ofD from the data,
which for f 51 is in good agreement with published da
@11#. From this and Eq.~3! together with Eq.~4!, one also
obtains a value of the parametera. One is then in a position
to plot the theoretical curve Eq.~9! together with the empiri-
cal data. This is shown in Fig. 6, for an occupation fracti
f 50.5. The agreement is quite good. The apparent shift
tween the theoretical curve and the data in reflection can
traced back to an issue of normalization involving partic
reflected after a very few bounces, which therefore do
show diffusive behavior. Thus, the empirical distribution h
a short-time cutoff at larger times than the correspond
diffusive model.

Finally, we measure the distribution of heights of tran
mitted particles. This distribution can be computed in t
diffusive model. The result for transmitted particles is,
shown in Appendix B,

p~h!5
sinp~12a!

2a

1

coshph2cosp~12a!
, ~11!

whereh is the scaled heighty/( lL ) and a is as above. In
Fig. 7 we showp(h) for transmitted particles. The agree
ment is excellent. We do not show the behavior for reflec
particles as it is dominated by rapid reflections.

V. CONCLUSIONS

Summarizing, we have studied transport properties o
nite size samples of Lorentz gases in a situation in which
mean free path can be varied over a large range of va
without affecting the property of normal diffusion. The me
free path was varied over a considerable range~slightly more
than an order of magnitude!, and the agreement with th
Brownian motion model was satisfactory throughout. W

FIG. 7. Height distribution of transmitted particles for quench
disorder,w50.2 andf 50.2. The continuous curve is the plot of E
~11!. The experimental distribution was found by letting 107 par-
ticles travel through a slab with 100 columns.
04110
e-
e

s
t

s
g

-
e
s

d

-
e
es

have also shown how the diffusion constant and the pene
tion depth, which were the two dynamical parameters of
model, vary with dilution, and hence with the mean fr
path.
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APPENDIX A

In this appendix, we show in detail how the exact re
tions ~2! and~3! are obtained. To this end, we first recall th
derivation of a general formula due to Kac. Consider
(2N21)-dimensional energy shell in a 2N-dimensional
Hamiltonian phase space and select a (2N22)-dimensional
Poincare´ surface that intersects all~or nearly all! trajectories
on the energy shell. If such a surface cannot be found, t
the phase space integrals below must be restricted to that
of the phase space which can be reached from the surfa

Parametrize each point (p,q) on the energy surface usin
the last point (p̄,q̄) on the Poincare´ surface that lies on the
trajectory passing through (p,q). Denote byTE( p̄,q̄) the
time necessary to reach (p,q) starting from (p̄,q̄). This de-
fines the canonical coordinate transformation

dNp dNq5dN21p̄dN21q̄dT dE. ~A1!

The constant energyE0 volume is hence

E dNpdNq d @E02H~p,q!#5E dN21p̄dN21q̄ TE0
~ p̄,q̄!.

~A2!

Denoting byN, the total (2N22)-dimensional phase spac
volume of the Poincare´ surface, one immediately obtains th
Kac formula for the average time to return to the surface

^TE0
&5N 21E d @E02H~p,q!#dNpdNq, ~A3!

N5E
E5E0

dN21p̄dN21q̄.

To evaluate these integrals in the case of billiards forN52
~of which the Lorentz gas with quenched disorder is a p
ticular case!, we take the Hamiltonian to bep2/2 andE0 to
be 1/2. From this follows

E d2pd2qd @1/22p2/2#52pS, ~A4!
1-5
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whereS is the area of the billiard. As a Poincare´ surface we
introduce an arbitrary subset of the billiard boundary hav
perimeterP, with the usual Birkhoff coordinates as variabl
p̄ and q̄. One then finds

E
E5E0

dp̄dq̄5PE
2p/2

p/2

cosu du52P. ~A5!

From these two equations one derives Eq.~1!
The above remarks are clearly limited to the case

quenched disorder. The generalization to the annealed
can be made as follows: to every point (p̄,q̄) on the Poincare´
surface, add a doubly infinite sequence of zeroes and o
(sk)k52`

` , which we denote bys̄, with all sk independently
distributed and equal to one with probabilityf. We now de-
fine the dynamics as follows: The orbit starts from (p̄,q̄) and
the cell att50 is occupied or empty according to the val
of s0. The orbit then proceeds until it leaves the cell. T
status of the next cell is then decided according to the va
of s1 and so on. Although discontinuities arise when a t
jectory crosses a vertex of the fundamental cell, the dyn
ics is still given by a canonical map. Thus, for afixed se-
quences̄ the formula Eq.~A3! applies. However, for a fixed
sequence, we cannot easily compute the phase space
umes involved. Since we are only interested in the averag

^T&(s̄) over all values ofs̄, we note the following: the de
nominator in Eq.~A3! is independent ofs̄, so that it is suf-
ficient to average over the numerator. This average can
performed separately for each cell, and the result there
follows trivially.

APPENDIX B

In this appendix we derive Eqs.~9! and~11!. To this end,
we first derive an analog of Eq.~9! for the probability that a
,

l.

04110
g

f
se

es

e
-
-

ol-
of

be
re

particle first exits the slab on the right side at a heighty and
at timet. In order to simplify the notation, we first go over t
scaled variablesj5x/( lL ), h5y/( lL ), a5a/( lL ), as well
as t̄5Dt/( lL )2. All distribution functions are further re-
scaled in such a way as to remain normalized. In these v
ables, this probability is given by

ptrans~h; t̄ !52
]P0~j.h; t̄ !

]j
U

j51

, ~B1!

whereP0(j,h) is the solution of the following problem:

]P0~j,h; t̄ !

]t̄
5DP0~j,h!,

P0~j,h;0!5d~j2a!d~h! P0~0,h; t̄ !5P0~1,h; t̄ !50.
~B2!

This is now solved by developing thed function in eigen-
modes of the Laplacian satisfying the boundary conditions
Eq. ~B2!, that is

P0~j,h; t̄ !52(
n51

`

sinnpj sinnpaE
2`

` dk

2p
eikh

3exp@2~p2n21k2!t̄ #. ~B3!

The resulting expression forptrans(h,t̄) can now be inte-
grated either overh or over t̄ to yield Eq. ~9! or Eq. ~11!,
respectively. In either case, obtaining the results in the tex
now a matter of straightforward algebra.
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